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1. INTRODUCTION 
     Natural convection in enclosures has attracted 

considerable interest of investigators. Such type of flow 

has a wide range of applications, for example, multi-pane 

windows, cooling of electronic equipment, solar thermal 

central receiver design, aircraft break-housing systems 

design and in other building and equipment components. 

Especially recently, sloped windows and skylights have 

been more and more frequently applied in buildings, 
which makes it necessary to gain more understanding on 

the natural convection in the cavities. 

     A large numbers of literatures are available which deal 

with the study of natural convection in enclosures [1-3] 

with either vertical or horizontal imposed heat flux or 

temperature difference. Hadjisophocleous et al. [4] 

solved the natural convection of a square cavity problem 

by no orthogonal boundary fitted coordinate system. 

However, they compared their results with that of de Vahl 

Davis [5] and Markatos and Perikleous [6] which is a 

regular geometry problem. Chan and Tien [7] studied 

numerically shallow open cavities and also made a 
comparison study using a square cavity in an enlarged 

computational domain. They found that for a square open 

cavity having an isothermal vertical side facing the 

opening and two adjoining adiabatic horizontal sides, 

satisfactory heat transfer results could be obtained, 

especially at high Rayleigh numbers. In a similar way, 

Mohamad [8] studied inclined open square cavities, by 

considering a restricted computational domain. Different 

from those by Chan and Tien [9], gradients of both 

velocity components were set to zero at the opening 

plane. It was found that heat transfer was not sensitive to  

 

inclination angle and the flow was unstable at high  

Rayleigh numbers and small inclinations angles. G. Saha 

et al [10] investigated a numerical simulation of 

two-dimensional laminar steady-state natural convection  

in a square tilt open cavity. The results show that the 

Nusselt numbers increases with the Rayleigh numbers. 

Also the average Nusselt number changes substantially  

with the inclination angle of the cavity while better 

thermal performance was also sensitive to the boundary 
condition of the heated wall. 

 Finite element (FE) analysis is a method to 

numerically solve partial differential equations which 

can be applied to many problems in engineering. The 

method has been extended to solve problems in several 

other fields such as in the field of heat transfer, 

electromagnetic, biomechanics, complex structural 

problems [11-13]. In spite of the great success of the 

method in these fields, its application to fluid mechanics 

is still under intensive research. This is due to the fact 

that the governing differential equations for general flow 

problems consist of several coupled equations that are 
inherently nonlinear. Accurate numerical solutions thus 

require a vast amount of computer time and data storage. 

One-way to minimize the amount of computer time and 

data storage used is to employ an adaptive meshing 

technique [14]. The technique places small elements in 

the regions of large change in the solution gradients to 

increase solution accuracy, and at the same time, uses 

large elements in the other regions to reduce the 

computational time and computer memory. 

 The objective of the present study is to investigate 

the effects of diameter ratio of adiabatic cylinder on 
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natural convection placed inside an open cavity and to 

investigate, by developing a finite element formulation 

suitable for the analysis of steady-state natural 

convection flow problems. As the first step toward 

accurate flow solutions using the adaptive meshing 

technique. The paper starts from the Navier-Stokes 

equations together with the energy equation to derive the 

corresponding finite element equations. The 

computational procedure used in the development of the 
computer program is described. The finite element 

equations derived and then the computer programs 

developed are then evaluated by example of natural 

convection in a square open cavity. 

 

2. MATHEMATICAL FORMULATION 

     Natural convection is governed by the differential 

equations expressing conservation of mass, momentum 

and energy. The present flow is considered steady, 

laminar, incompressible and two-dimensional. The 

viscous dissipation term in the energy equation is 

neglected. The Boussinesq approximation is invoked for 
the fluid properties to relate density changes to 

temperature changes, and to couple in this way the 

temperature field to the flow field. The governing 

equations in non-dimensional form are written as 

follows: 
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Equations (1)-(4) were normalized using the following 

dimensionless scales: 
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     Here Pr and Gr are Prandtl and Grashof number 

respectively. The reference velocity Uo is related to the 

buoyancy force term and is defined as 

 

oU g L t   

 

     The Nusselt number (Nu) is one of the important 

dimensionless parameters to be computed for heat 

transfer analysis in natural convection flow. The local 

Nusselt number can be obtained from the temperature 
field by applying 
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     and the average or overall Nusselt number was 

calculated by integrating the temperature gradient over 

the heated wall as  

 

 
1

0
,0

1
dY

Y
Nu


 

 

3. NUMERICAL PROCEDURE 

     The velocity and thermal energy equations (1)-(4) 

result in a set of non-linear coupled equations for which 

an iterative scheme is adopted. To ensure convergence of 

the numerical algorithm the following criteria is applied 

to all dependent variables over the solution domain  
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     where  represents a dependent variable U, V, P, and 
T; the indexes i, j indicate a grid point; and the index m is 

the current iteration at the grid level. The six node 

triangular element is used in this work for the 
development of the finite element equations. All six 

nodes are associated with velocities as well as 

temperature; only the corner nodes are associated with 

pressure. This means that a lower order polynomial is 

chosen for pressure and which is satisfied through 

continuity equation. The velocity component and the 

temperature distributions and linear interpolation for the 

pressure distribution according to their highest derivative 

orders in the differential Eqs (1)-(4) as 
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   PHY,XP
                  (8) 

 

 

     where α = 1, 2, … …, 6; λ= 1, 2, 3; Nα are the element 

interpolation functions for the velocity components and 

the temperature, and Hλ are the element interpolation 
functions for the pressure. 

     To derive the finite element equations, the method of 

weighted residuals [15] is applied to the continuity Eq. 

(1), the momentum Eqs (2)-(3) and  the energy Eq. (4). 

 

4. RESULTS AND DISCUSSIONS 

     In this problem  a square open cavity with the left 

vertical wall is at constant heat flux, as shown in Figure 1, 

while the top and bottom walls are kept at the ambient 

constant temperature.. The fluid concerned is air with 

Prandtl number 0.71. Results are obtained for a range of 

Grashof number from 103 to 106 at Pr = 0.71 with 

constant physical properties. The governing mass, 

momentum and energy equations are expressed in a 

normalized primitive variables formulation. Here a finite 

element method for steady-state incompressible natural 

convection flows has been developed. The streamlines 

and isotherms are produced, heat transfer characteristics 

is obtained for Grashof numbers from 103 to 106 and for 

dr=0.2, 0.3 and 0.4. The results show that the Nusselt 

numbers increases with the Grashof numbers. Also the 

Nusselt number changes substantially with the diameter 

ratios of the cylinder of the cavity while better thermal 

performance is also sensitive to the boundary condition 
of the heated wall. 

 

 
Fig 1. Schematic diagram of the square open cavity 

 

 
 

 Fig 2. Convergence of average Nusselt number with 

grid refinement for Gr = 106 and dr = 0.2 
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Fig 3.  Streamlines and Isotherms patterns for dr = 0.2 
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Fig 4. Streamlines and Isotherms patterns for dr = 0.3 
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Fig 5. Streamlines and Isotherms patterns for dr = 0.4 

 

 In order to obtain grid independent solution, a grid 

refinement study is performed for a square open cavity 
with Gr = 106 and dr = 0.2. Figure 2 shows the 

convergence of the average Nusselt number, Nu at the 

heated surface with grid refinement. It is observed that 

grid independence is achieved with 13686 elements 

where there is insignificant change in Nu, with further 

increase of mesh elements. Grid independent solution is 

ensured by comparing the results of different grid meshes 

for Gr = 106, which was the highest Grashof number. The 

total domain is discretized into 4806 elements that results 

in 32643 nodes. In order to validate the numerical code, 

pure natural convection with Pr = 0.71 in a square open 
cavity was solved, and the results were compared with 

those reported by Hinojosa et al. [16], obtained with an 

extended computational domain. In Table 1, a 

comparison between the average Nusselt numbers is 

presented. 

 

Table 1: Comparison of the results for the constant 

surface temperature with Hinojosa et al [16] at Pr = 0.71 

 

Gr 

Nu 

Present 

work 

Hinojosa et al 

[16] 

Difference 

(%) 

103 1.32 1.30 1.54 

104 3.45 3.44 0.29 

105 7.41 7.44 0.40 

106 14.44 14.51 0.48 

 

     A comparison between the steady-state patterns of 

streamlines from Grashof numbers of 103 to 106 with 

different diameter ratios of the circular cylinder placed 

inside the cavity is presented in Figure 3 to 5.  For the 

isotherm, the figures show that as the Grashof number 
and the diameter ratios increase, the buoyancy force 

increases and the thermal boundary layers become 

thinner. For the streamlines, the figures show that the 

fluid enters from the bottom of the aperture, circulates in 
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a clockwise direction following the shape of the cavity, 

and leaves toward the upper part of the aperture. The 

streamline patterns is very similar for first two Grashof 

numbers, but the fluid moves faster for Gr = 104. Also, 

for Gr = 105 and 106, the streamline patterns is similar but 

the upper boundary layer becomes thinner and faster, the 

velocity of the air flow moving toward the aperture 

increases, and the area that is occupied by the leaving hot 

fluid decreases compared with that of the entering fluid. 
The results are presented in terms of streamlines and 

isotherm patterns. The variations of the average Nusselt 

number and average temperature are also highlighted. 

 

 
 

Fig 6. Average Nusselt number as a function of Grashof 

Number for different diameter ratio 

 

5. CONCLUSION 

     A numerical investigation on natural convection 

around an adiabatic circular cylinder in an open 

enclosure has been performed by using finite element 

method. The results show that the heat transfer rate 

increases with the decrease of heat source size and 
increase of Grashof number. The maximum 

non-dimensional temperature also decreases as Gr 

increases keeping any of these parameters constant. 

 

6. NOMENCLATURE 
 

Symbol Meaning Unit 

g gravitational acceleration ms–2
 

Gr Grashof number  

k thermal conductivity of the fluid Wm–1K–1
 

L hight and width of the enclosure m 

Nu Nusselt number  

p pressure Nm–2
 

P non-dimensional pressure 
 

Pr Prandtl number  

q heat flux Wm–2
 

T dimensional temperature  

T temperature K 

u, v velocity components ms–1
 

U, V 
non-dimensional velocity 

components 
 

x, y Cartesian coordinates m 

X, Y 
non-dimensional Cartesian 

coordinates 
 

α thermal diffusivity m2s–1
 

β thermal expansion coefficient K–1
 

ρ density of the fluid kgm–3
 

υ kinematic viscosity of the fluid m2s–1
 

θ non-dimensional temperature  
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